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ABSTRACT: This paper is concerned with the determination of temperature, displacement and thermal stresses of a 

thick annular disc occupying the space hzhbraD  ,: . . The governing heat conduction equation has 

been solved by using Marchi- Zgrablich transform and Marchi Fasulo transforms techniques. The main aim of this 

paper is to study the thermo elastic response of a thick annular disc in which sources are generated according to linear 

function of the temperature with stated boundary conditions of the third kind, radiation type. The material of the disc is 

isotropic, homogeneous and all properties are assumed to be constant. Heat conduction with internal heat source and 

the prescribed boundary conditions of the radiation type, where the stresses are required to be determined. The results 

are obtained in series form in terms of Bessel’s function. In this article, we analysed unsteady state thermo elastic 

problem of temperature, displacement and thermal stresses of a thick annular disc due to heat generation. The statement 

of the problem is related to annular disc occupying the space   braD :   hzh   and an attempt is made 

to study the unsteady state thermo elastic problem to determine the temperature, displacement and stress functions of 

the thick annular disc with stated boundary conditions using  Marchi- Zgrablich transform and Marchi Fasulo transform 

to find the solution of the problem. Conditions stated in the problem is of third kind boundary conditions at 

-hz &h z b,r a,r  . We successes fully established and obtained the temperature distribution using 

Marchi- Zgrablich transform and Marchi Fasulo transform techniques by applying to governing heat conduction 

equation. The displacement function in cylindrical co-ordinate system which are represented by the Goodier thermo 

elastic function   and Michell’s function M Further, by using expression for temperature,  we obtained the expression 

for thermo elastic displacement Ur, Uz and stress functions rzzz   ,,,rr .  

 

I.     INTRODUCTION 

 

Nowacki
1
 has determined steady state thermal stresses in a thick circular plate subjected to an axi symmetric 

temperature distribution on the upper face with zero temperature on the lower face and circular edge. Wankhede
5
  has 

determined the quasi-static thermal stresses in circular plate subjected to arbitrary initial temperature on the upper face 

with lower face at zero temperature. However, there are not many investigations on transient state Roy Chaudhari
4
 has 

succeeded in determining the quasi-static thermal stresses in a circular plate subjected to transient temperature along 

the circumference of circular upper face with lower face at zero temperature and the fixed circular edge thermally 

insulated. In a recent work, some problems have been solved by Noda et.al.
6
 and Deshmukh et.al.

9 
In all a fore 

mentioned investigations an axi symmetrically heated plate has been considered. Recently, Nasser
7,8

 proposed the 

concept of heat sources in generalized thermo elasticity and applied to a thick plate problem. They have not however 

considered any thermo elasticity problem with boundary condition of radiation type in which sources are generated 

according to the linear function of the temperatures, which satisfies the time dependent heat conduction equation. 

 This paper is concerned with the transient thermo elastic problem of the annular disc in which sources are 

generated according to the linear function of temperature occupying the space hz  h- b,ra :D  with 

radiation type boundary conditions.  
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II. RESULT REQUIRED 

A. FINITE MARCHI ZGRABLICH INTEGRAL TRANSFORM- 

The finite Marchi Zgrablich integral Transform of f(r) is defined as  


b

a

r)dr,,(rf(r)S(n)f npp   

Where 1 , 2 , 1 , and 2  are the constants involved in the boundary conditions  
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Kernel function r),,(S np   can be defined as  

 ),(),()(Jr),,(S pnp bYaYr npnpn    

                        ),(),()(Y- p bJaJr npnpn    

And )( rJ p  and )( rYp  are Bessel’s function of first and second kind respectively. 

 

B. OPERATIONAL PROPERTY 
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       C.   FINITE MARCHI FASULO INTEGRAL TRANSFORM- 

The finite Marchi Fasulo i integral Transform of f(z), -h<z<h is defined to be  

dzzPzfmF m

h

h

)()()( 


  

Then at each point of (-h, h) at which f(z) is continuous  

)(
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Where  

)sin()cos()( zaWzaQzP mmmmm   

)sin()()cos()( 2121 hahaaQ mmmm    

)sin()()cos()( 1221 haahaW mmmm    
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The eigen values ma are the solution of the equation  

 )sin()cos([)]sin()cos([ 2211 ahaahahaha   ]  

)sin()cos([)]sin()cos([ 1122 ahaahahaha   ] 

21, , 21  and are constants. 

The sum must be taken on n corresponding to the positive roots of the equation. Moreover the integral 

transform has the following property  
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Sometimes an image  

III .STATEMENT OF THE PROBLEM 

 

Consider thick annular disc of thickness 2h occupying the space ,: braD  hzh   The material is 

homogenous and isotropic. The differential equation governing the displacement potential function (r,z,t) as Nowacki 

[1] is  
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Where, and t are poisons ratio and linear coefficient of thermal expansion of the material of the plate and T is the 

temperature of the plate satisfying the differential equation as         Noda [6] is  
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Subject to initial condition  

0)z,0T(r, T        For all hz  h- b,ra                    (3) 

The boundary conditions are  
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Where, k is thermal diffusivity of material of the plate.
C

k



 ,  being the thermal conductivity of the material, 

is the density and C is the calorific capacity, assumed to be constant. The displacement function in the cylindrical co-

ordinate system are represented by Michell’s function as   
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The Michell’s function must satisfy  022  M   (10) 

Where, 
2

2

2

2
2 1

zrrr 












  

The component of the stresses are represented by the thermo elastic displacement potential  and Michell’s function M 

as Noda [6] are   
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For traction free surface, stress function  

0  rz  at hz   for thick plate. 

Equations (1) to (14) constitute the mathematical formulation of the problem under consideration. 

 

Fig. 1: Shows the geometry of the problem 

IV.SOLUTION OF THE PROBLEM 

 

In order to solve fundamental differential equation (2) under the boundary conditions (4) and (5). 

We first introduce the integral transform( 2 ) of order n over the variable r. let n be the parameter of 

the transform then the integral transform and its inversion is giver by  
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Applying the transform defined in equation (2) to the equations (2), (3), (6) and  (7) and taking into 

account equations  (4) and (5) one obtains 

dt
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Where T the transformed function of T and n is the transform parameter and n  are the positive 

roots of the characteristics equation. 
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In which )(0 rJ  and )(0 rY  are Bessel functions of first and second kind of order P=0 respectively 

We introduce another integral transform [3] that responds to the boundary conditions of type (6) 

and (7) 
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The Eigen values am are the positive roots of the characteristics equation 
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Further, Applying the transform defined in equation (23) to the equations (19), (20) and using 

equations (21), (22) one obtains. 
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V .DETERMINATION OF DISPLACEMENT FUNCTION 

 

Substituting equations (27) and (28) in equation (8), (9) we get, 
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VI. DETERMINATION OF THERMAL STRESSES 
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VII.  NUMERICAL RESULTS AND DISCUSSION 

           To interpret the numerical computations, we consider material properties of Aluminum metal, which can be 

commonly used in both, wrought and craft farms, the low density of aluminum results in its extensive use in the 

aerospace industry and in other transportation fields. Its resistance to corrosion lead to its use in food and chemical 

handling (cookware, presser vessels etc.) and to architectural uses. 

Table 1: Material properties and parameters used in this study.  Property values are nominal 

          The foregoing analyses are performed by setting the radiation coefficients constants. Ki=0.86(i=1,3) and 

Ki=1(i=2,4) so, to obtain considerable mathematical simplicities. We can derived numerical results at t=0.25, 0.5, 0.75, 

1. 
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Modulus of Elasticity, E(dynes/cm
2
) 6.9x10

11
 

Shear modulus, G(dynes/cm
2
) 2.7x10

11
 

Poisson ratio,   0.281 

Thermal expansion coefficient, )/( 0 Ccmcmt   25.5x10
-6 

Thermal diffusivity, K(cm
2
/sec) 0.86 

Thermal conductivity , ]sec///[ 20 cmCcmcal   0.48 

Inner radius, a(cm) 2 

Outer radius, b(cm) 10 

Thickness, h(cm) 3 

 

 

VIII. CONCLUSION 

 

            In this article, the temperature distribution, displacement and thermal stresses of a thick annular disc are 

investigated with known boundary conditions. Finite integral transform techniques are used to obtain numerical results. 

The results are obtained in terms of Bessel’s function in the form of infinite series. 

             Any particular case of special interest can be assigned to the parameters and functions in expressions. The 

results that are obtained can be useful to the design of structure or machines in engineering applications.  
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