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ABSTRACT: This paper provides an introduction to the main concepts and techniques necessary for someone who 

wishes to carryout numerical experiments involving Stochastic Differential Equation (SDEs). As SDEs are frictionless 

generally and the solutions are continuous stochastic process that represent diffusive dynamic especially in finance, it is 

required of us to take into account random effects and influences in real world systems which are essential in the 

accurate description of such situations. 

 

  We include a review of Stochastic Differential equations (SDE), Geometric Brownian Motion, Euler-

Maruyama, Milstein and Taylor approximate which gives a clear picture of their graphical approximate and exact 

solution. We finally compared the convergence of Euler-Maruyama and Milstein 

 

KEYWORDS: Stochastic Differential Equations, Stochastic Taylor Expansion, Euler-Maruyama, path wise 
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I.                 INTRODUCTION 

Stochastic Differential Equations(SDEs) are differential equations where stochastic process represents one or more 

terms and, as a result consequence; the resultant solution will also be stochastic [3].As more realistic, Mathematical 

Models become required to take into account random effects and influences in real world systems and SDEs have 

become essential in the accurate description of such situations [2]. The solutions are continuous-time stochastic 

processes and methods for the computational solution of stochastic differential equation are based on similar techniques 

for stochastic dynamic [3]. 

 

 Stochastic modelling has come to play an important role in many branches of science and industry. The concept has 

been initiated by Einstein in 1905 [12]. In his article, he presented a mathematical connection between microscopic 

random motion of a particles and macroscopic diffusion equation. The models have been used after with great success 

in a variety of application areas, including biology, epidemiology, mechanics, economics and finance. Various authors 

have given their contribution in these field.Kloeden and Platen[8] have discussed extensively about numerical solution 

of stochastic differential in detail. Platen [10] buttressed this with the discrete time strong and weak approximation 

methods for the numerical methods to get the solution of stochastic differential equations.Higham [4] contributed and 

solve the approximate solution of SDEs with few problems. Higham and kloeden [5] further work on nonlinear 

stochastic differential equation as they presented two explicit methods for 𝐼𝑡ô SDEs with Poisson-driven jumps. Nayak 

and Chakraverty [6] worked on numerical solution of fuzzy stochastic differential equation, where they review the 

alternative approach to solve uncertain SDE. 

As more realistic, Mathematical Models become required to take into account random effects and influences in  

real world systems, SDEs have become essential in the accurate description of such situations [2]. The solutions are 

continuous-time stochastic processes and methods for the computational solution of stochastic differential equation are 

based on similar techniques for stochastic dynamic [3]. 

  

We consider a general SDE, which when given in symbolic differential form in one dimension is  

 𝑑𝑋𝑡 = 𝑎 𝑋𝑡 𝑑𝑡 + 𝑏 𝑋𝑡 𝑑𝑊𝑡  , 𝑋 0 = 𝑋0,   0 ≤ 𝑡 ≤ 𝑇                                               (1) 
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where𝑎(𝑋𝑡) is the drift parameter, 𝑏(𝑋𝑡) is the diffusion parameter(or noise term) and 𝑊𝑡  is a Wiener process. If the 

diffusion parameter does not depend on𝑋𝑡 , we say the equation has additive noise, otherwise the equation has a 

multiplicative noise. A Wiener process 𝑊 = 𝑊𝑡 , 0 ≤ 𝑡 ≤ 𝑇  is a Gaussian process that depends continuously on time 

such that 

1.   𝑊 0 = 0(with probability one)  

2.  for0 ≤ 𝑡 ≤ 𝑇,  𝐸 𝑊 𝑡  = 0and for0 ≤ 𝑡 ≤ 𝑇,  𝑉𝑎𝑟 𝑊 𝑡 − 𝑊 𝑠  = 𝑡 − 𝑠 

3. for  0 ≤ 𝑠 < 𝑡 < 𝑢 < 𝑣 ≤ 𝑇, the increments 𝑊 𝑡 − 𝑊(𝑠)and 𝑊 𝑣 − 𝑊(𝑢) are independent. 

 The Wiener process, named after Norbert Wiener, is a mathematical construct that formalizes random 

behavior characterized by the botanist Robert Brown in 1827 commonly called Brownian motion. The Stochastic 

integral to equation (1) can be expressed as  

𝑋𝑡 = 𝑋0 +  𝑎(𝑋𝑡)𝑑𝑠
𝑡

𝑡𝑜

+  𝑏(𝑋𝑡)
𝑡

𝑡𝑜

𝑑𝑊𝑠                                                (2) 

wherethe first integral is a regular (Riemann or Lebesgue) integral and the second integral is a stochastic integral, 

usually interpreted in the 𝐼𝑡𝑜  or Stratonovich form. 

 The 𝑑𝑊𝑠 of Brownian Motion𝑊𝑠 is called White noise, a typical solution is a combination of drift and 

diffusion of Brownian motion. 

 It is important in the case of numerical analysis to have an equation with a known solution so that the accuracy 

of a numerical scheme can be determined. We there consider a stochastic differential equation which has a 

multiplicative noise and explicit solution used to model the randomness of underlying asset in financial mathematics 

often called Black-Scholes diffusion equation as in (1) and has the explicit solution[12] 

𝑋𝑡 = 𝑋0𝑒𝑥𝑝   𝑎 −
𝑏2

2
 𝑡 +  𝑏𝑊𝑡                                                               (3) 

for𝑡𝜖 0, 𝑇  and Wiener process 𝑊 = (𝑊𝑡 , 𝑡 ≥ 0) 

 

II.           STOCHASTIC TAYLOR EXPANSION 

Much of the deterministic numerical analysis for Ordinary differential equations is based on manipulating and 

truncating Taylor expansions.  

 The 𝐼𝑡ô-Taylor expansion is based on repeated iterations of 𝐼𝑡ô formula. We shall consider again the integral 

equation (2). Note that we require the terms a and b to satisfy a linear growth bound and to be sufficiently smooth. For 

any twice continuously differentiable function: ℜ → ℜ𝐼𝑡ô’s formula gives. 

𝑓 𝑋𝑡 = 𝑓 𝑋𝑡0
 +   𝑎 𝑋𝑠 𝑓

′ 𝑋𝑠 +
1

2
𝑏2 𝑋𝑠 𝑓

′′  𝑋𝑠  𝑑𝑠
𝑡

𝑡0

+ 

 𝑏 𝑋𝑠 𝑓
′ 𝑋𝑠 𝑑𝑊𝑠

𝑡

𝑡0

                                                                            (4)   

Using the operators 𝐿0 and 𝐿′  

 𝐿0𝑓 = 𝑎𝑓 ′ + 1

2
𝑏2𝑓 ′′ and 𝐿′ = 𝑏𝑓 ′                                                                                          (5) 

equation (4) gives 

𝑓 𝑋𝑡 = 𝑓 𝑋𝑡0
 +  𝐿0𝑓

𝑡

𝑡0

 𝑋𝑠 𝑑𝑠 +  𝐿′𝑓 𝑋𝑠 𝑑𝑊𝑠

𝑡

𝑡0
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If we apply the relation (5) to the functions 𝑓 = 𝑎 and  𝑓 = 𝑏, we have 

𝑋𝑡 = 𝑋𝑡0
+  (𝑎 𝑋𝑡0

 +  𝐿0𝑎 𝑋𝑠 𝑑𝑧 +  𝐿′𝑎 𝑋𝑧 𝑑𝑊𝑧)𝑑𝑠
𝑠

𝑡0

𝑠

𝑡0

𝑡

𝑡0

 

+  (𝑏 𝑋𝑡0
 +  𝐿0𝑏 𝑋𝑠 𝑑𝑧 +  𝐿′𝑏 𝑋𝑧 𝑑𝑊𝑧)𝑑𝑠

𝑠

𝑡0

𝑠

𝑡0

𝑡

𝑡0

 

= 𝑋𝑡0
+ 𝑎 𝑋𝑡0

  𝑑𝑠
𝑡

𝑡0

+ 𝑏 𝑋𝑡0
  𝑑𝑊𝑠

𝑡

𝑡0

+ 𝑅1                                                                (6) 

Where 𝑅1is the remainder term. 

𝑅1 =    𝐿0𝑎 𝑋𝑧 𝑑𝑧
𝑠

𝑡0

𝑡

𝑡0

𝑑𝑠 +   𝐿′𝑎 𝑋𝑧 𝑑𝑊𝑧𝑑𝑠
𝑠

𝑡0

𝑡

𝑡0

+ 

  𝐿0𝑏 𝑋𝑧 𝑑𝑧
𝑠

𝑡0

𝑑𝑊𝑠

𝑡

𝑡0

+   𝐿′𝑏 𝑋𝑧 𝑑𝑊𝑧𝑑𝑊𝑠

𝑠

𝑡0

𝑡

𝑡0

                                           (7) 

Using𝑓 = 𝐿′𝑏 in (6) 

𝑋𝑡 = 𝑋𝑡0
+ 𝑎 𝑋𝑡0

  𝑑𝑠
𝑡

𝑡0

+ 𝑏 𝑋𝑡0
  𝑑𝑊𝑠

𝑡

𝑡0

+ 𝐿′𝑏 𝑋𝑡0
 +   𝑑𝑊𝑧𝑑𝑊𝑠

𝑠

𝑡0

𝑡

𝑡0

+ 𝑅2 

= 𝑋𝑡0
+ 𝑎 𝑋𝑡0

  𝑑𝑠
𝑡

𝑡0

+ 𝑏 𝑋𝑡0
  𝑑𝑊𝑠

𝑡

𝑡0

+ 𝑏 𝑋𝑡0
 𝑏′(𝑋𝑡0

)   𝑑𝑊𝑧𝑑𝑊𝑠

𝑠

𝑡0

𝑡

𝑡0

+ 𝑅3  

with remainder 

𝑅3 =   𝐿0𝑎 𝑋𝑧 𝑑𝑧
𝑠

𝑡0

𝑡

𝑡0

𝑑𝑠 +   𝐿′𝑎 𝑋𝑧 𝑑𝑊𝑧𝑑𝑠
𝑠

𝑡0

𝑡

𝑡0

+   𝐿0𝑏 𝑋𝑧 𝑑𝑧
𝑠

𝑡0

𝑑𝑊𝑠

𝑡

𝑡0

 

+    𝐿𝑜𝐿′𝑏 𝑋𝑢 𝑑𝑢𝑑𝑊𝑧𝑑𝑊𝑠

𝑧

𝑡𝑜

𝑠

𝑡𝑜

𝑡

𝑡𝑜

+    𝐿′𝐿′𝑏 𝑋𝑢 𝑑𝑊𝑢𝑑𝑊𝑧𝑑𝑊𝑠

𝑧

𝑡𝑜

𝑠

𝑡𝑜

𝑡

𝑡𝑜

 

It can further be expressed with the multiple 𝐼𝑡ô integral holding on already apparent in the preceding example as 

 𝑑𝑠
𝑡

𝑡𝑜

,    𝑑𝑊
𝑡

𝑡𝑜

,     𝑑𝑊𝑧𝑑𝑊𝑠

𝑠

𝑡0

𝑡

𝑡0

 

This has proven to be a very useful tool in both theoretical and practical investigations, particularly in numerical 

analysis. It allows the approximation of a sufficiently smoothfunction in a neighborhoods of a given point to any 

desired order of accuracy. [3][8]  
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             III.STRONG ORDER 1.5 TAYLOR SCHEME 

The Euler-Maruyama and Milstein Scheme can be considered to be specific cases of a more general class of methods 

know as strong Taylor schemes or approximations form by including approximately many terms from stochastic-Taylor 

expansions.  

 We consider the Taylor order 1.5 scheme for SDE (1) as 

𝑌𝑛+1 = 𝑌𝑛 + 𝑎 𝑌𝑛 ∆ + 𝑏 𝑌𝑛 ∆𝑊 +
1

2
𝑏 𝑌𝑛 𝑏′(𝑌𝑛)( ∆𝑊)2 − ∆ + 𝑏 𝑌𝑛 𝑎′(𝑌𝑛)∆𝑍 

 +1

2
∆2  𝑎 𝑌𝑛 𝑎

′ 𝑌𝑛 + 1

2
𝑏2 𝑌𝑛 𝑎

′′  𝑌𝑛  +  𝑎 𝑌𝑛 𝑏
′ 𝑌𝑛 + 1

2
𝑏2 𝑌𝑛 𝑏

′′  𝑌𝑛   

  ∆𝑊∆ − ∆𝑍 + 𝑏(𝑏 𝑌𝑛 𝑏
′′  𝑌𝑛 +  𝑏 𝑌𝑛 )2 +  1

3
 ∆𝑊 2 − ∆ ∆𝑊                                (8) 

It becomes clear whether the higher-order methods are needed in a given application depends on how the resulting 

approximate solutions are to be used. we consider a particular Brownian path and compute for successively ∆= 2−2,
2−4 produces the plots below. 

 
Figure 1.The comparison of the Taylor scheme with the exact solution where 𝑎 = 2, 𝑏 = 1 at ∆= 2−2 , 2−6. 
 

IV.EULER-MARUYAMA 

One of the simplest examples of strong approximations is the Euler or Euler-Maruyama method. We consideranItô 

process      

𝑋 = {  𝑋𝑡  , 𝑡0 ≤ 𝑡 ≤ 𝑇}Satisfying the scalar stochastic differential equation (1) 

     𝑑𝑋𝑡 = 𝑎 𝑋𝑡 𝑑𝑡 + 𝑏 𝑋𝑡 𝑑𝑊𝑡(9) 

on𝑡0 ≤ 𝑡 ≤ 𝑇 with the initial value  𝑋𝑡0
= 𝑋0 for a given discretization   𝑡0 ≤ 𝜏0 < 𝜏1 <.  .  . < 𝜏𝑛 = 𝑇  of the time 

interval [𝑡0, 𝑇], the Euler or Euler-Maruyama approximation is a continuous time stochastic process 𝑌 = {𝑌 𝑡 , 𝑡0 ≤
𝑡 ≤ 𝑇} satisfying the iterative scheme. 
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𝑌𝑛+1 = 𝑌𝑛 + 𝑎 𝑌𝑛 ∆ + 𝑏 𝑌𝑛 ∆𝑊                                                                                  (10) 

for𝑛 = 0,1,2, . . . , 𝑁 − 1  with initial  𝑌0 = 𝑋0 for ∆𝑊𝑛 = 𝑊𝜏𝑛+1
− 𝑊𝜏𝑛 . From the definition of Wiener process, it is 

follows that these increments are independent Gaussian random variable with mean 𝐸(∆𝑊𝑛) = 0 and variance 

𝐸 ∆𝑊𝑛)2 = ∆. 

In examine the first terms of stochastic Taylor expansion, we see that these form a basis of the Euler-

Maruyama scheme upon evaluating the integrals, forming ∆ and ∆𝑊 respectively. When the diffusion parameter 

≡ 0 , it reduces to ordinary deterministic Euler Scheme. The Euler-Maruyama converges with strong order 𝑘 = 1

2
  

while Euler converges with strong order 𝑘 = 1. [8][11] 

V.PATHWISE APPROXIMATION AND STRONG CONVERGENCE 

The concept of strong convergence uses the concept of the absolute error, which is the expectation of the absolute value 

of the difference between the approximation and the 𝐼𝑡ô process at the time T, that is 

∈= (𝐸 𝑋𝑇 − 𝑌 𝑇  𝑞)
1
𝑞                                                                                   (11) 

for some 𝑞 ≥ 1 and gives a measure of the pathwise closeness at the end of the time interval  0, 𝑇 . We say that a 

discrete time approximation Ywith step size 𝛿 converges strongly to X at time T if  

  lim
𝛿↓0

𝐸  𝑋𝑇 − 𝑌 𝑇   = 0                                                                               (12) 

Where Y is the approximate solution computed with constant stepsize𝛿 and E denotes expected value. For strongly 

convergent approximations, we further quantify the rate of convergent by the concept of order. An SDE convergence in 

the stepsize with order 𝑘 > 0 at time T if there exist positive constant C, which does not depend on 𝛿 and a 𝛿0 > 0 such 

that 

  𝐶 𝛿 = 𝐸  𝑋𝑇 − 𝑌 𝑇   ≤ 𝐶𝛿𝑘                                                                  (13) 

for sufficiently stepsize 𝛿 . This definition generalizes the standard convergence caterionfor ordinary differential 

equations. Although the Euler method for ordinary differential equations has order 1, while the strong order of Euler-

Murayama method for SDE is 1 2 . This fact was proved in Giklman and Skorokhod(1972)[9] 

Now that we have the necessary conditions in place, from equation (1), using the same parameter as in figure 1, we also 

consider a  

Brownian path and compute the Euler-Maruyama solution for two step size, taking successively ∆= 2−2, 2−4 produces 

the plots below. As we expect, the solution become less accurate as we increase the step size 𝛿𝑡 of the method 

http://www.ijarset.com/


      
         

                   ISSN: 2350-0328 
 

International Journal of Advanced Research in Science, 

Engineering and Technology 

Vol. 2, Issue 5 , May 2015 

 

Copyright to IJARSET                                                           www.ijarset.com                                                                          613 

 

 

 

Figure 2.The comparison of the Euler-Maruyama scheme with the exact solution where 𝑎 = 2, 𝑏 = 1 at ∆= 2−2,
2−6 

                          VI.WEAK EULER SCHEME 

Strong convergence allows accurate approximations to be compute on an individual realization basis. If, for example 

one only requires to compute a moment of solution X, we are not required to approximate individual path of X which 

leads to the concept of weak convergence. We say that a discrete time approximation Y of a solution X of an SDE 

converges in the weak sense as 𝛿 ↓ 0 with respect to a class C of test function 𝑔: ℜ𝑑 → ℜ if we have 

lim
𝛿↓0

|𝐸(𝑔( 𝑋𝑇) − 𝐸(𝑔 𝑌 𝑇  )| = 0                                                  (14) 

for all 𝑔𝜖𝐶. If C contains all polynomials, this definition implies the convergence of all moments which will involve the 

investigation of all moments. We shall say that a time discrete approximation Y converges weakly with order 𝑘 > 0 to 

X at time T as 𝛿 ↓ 0 if for each polynomial 𝑔, there exists a positive constant C, which does not depend on 𝛿 and a 

finite 𝛿 > 0 such that  

 |𝐸(𝑔(𝑋𝑇) − 𝐸(𝑔 𝑌 𝑇  )| ≤ 𝐶𝛿𝑘                                                                     (15) 

for each 𝛿𝜖(0, 𝛿0). The Euler approximation usually converges with weak order 𝑘 > 0 in contrast with the strong 

order 𝑘 = 1 2 . [3][8][12] 

VII.MILSTEIN METHOD 

Applying the Stochastic 𝐼𝑡ô-Taylor expansion  

𝑏 𝑋𝑡0
 𝑏′ 𝑋𝑡0

   𝑑𝑊𝑧𝑑𝑠
𝑠

𝑡𝑜

𝑡

𝑡𝑜

=   𝑏 𝑋𝑡0
 𝑏′ 𝑋𝑡0

 𝐼(1,1) 

     =  𝑏 𝑋𝑡0
 𝑏′ 𝑋𝑡0

 
1

2
((∆𝑊)2 − ∆) 

We obtain the Milstein scheme. 
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𝑌𝑛+1 = 𝑌𝑛 + 𝑎 𝑌𝑛 ∆𝑛 + 𝑏 𝑌𝑛 ∆𝑊𝑛 +  𝑏 𝑋𝑡0
 𝑏′ 𝑋𝑡0

 
1

2
( ∆𝑊)2 − ∆                  (17) 

which has strong order of convergence one (1). Note that the Milstein method is identical to the Euler- Maruyama 

method if 𝑋 ≡ 0 in the diffusion part 𝑏(𝑋, 𝑡) of the equation. Under this condition, Milstein will in general converges 

to the correct Stochastic Solution process faster than Euler-Maruyama as the step size 𝛿𝑡 goes to zero.[11s]. From 

equation (1), applying the same parameters used in figure 1, gives the graphical solution of Milstein approximation 

against exact solution 

 

Figure 2.The comparison of the Milstein scheme with the exact solution where 𝑎 = 2, 𝑏 = 1 at ∆= 2−2, 2−6 

We therefore consider the solution of the convergence for Euler-Murayama and Milstein as we infer the value of the 

constant 𝑘 in (14) above by plotting the log of mean error of a series of experiments of the log of the step size, 𝛿𝑡. The 

value of 𝑘 will be the slope at  ∆𝑡 = 2−8  of approximate solution of (1) for the error scales∆𝑡
1
2  and ∆𝑡  for Euler- 

Maruyama and Milstein respectively 

 

∆𝑡 Euler-Maruyama Milstein 

2−1 0.15825 0.05275 

2−2 0.12555 0.02478 

2−3 0.07507 0.00685 

2−4 0.05950 0.00725 

2−5 0.03771 0.00304 

2−6 0.02458 0.00104 

2−7 0.01316 0.00087 
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2−8 0.01528 0.00036 

2−9 0.01078 0.00013 

2−10  0.00680 0.00002 

                               

Figure 4.Error in the Euler- Maruyama and Milstein methods 

VIII. SUMMARY AND CONCLUSION 

This paper has discussed two three techniques for exploring the behavior of stochastic differential equation, taking 

into consideration the Brownian Motion which served as a basis in finance for computing the expected path of a 

function of  stochastic process.  

 We developed some numerical techniques for solving stochastic differential equation (SDEs) such as the 

Euler-Maruyama, Milstein Taylor methods.  

 We finally performed some convergences analysis and found that Milstein was the better performer in this 

respect, especially while considering strong convergence. 
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