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ABSTRACT: This paper is an introduction and survey of Black-Scholes Model as an arbitrage-free model which is 

very useful for Option Valuation. It is a Stochastic processes that represent diffusive dynamics, a common and 

improved modelling assumption for financial systems. 

      As the markets are stochastic generally, it becomes very necessary for us to use a more convenient model in order 

to avoid errors of computations. We include a review of Stochastic Differential equations(SDE), the Itô-lemma which 

gives a clear picture of Log-normal distribution of a Geometrical Brownian Motion path and solution of Black-Scholes 

Arbitrage-free model 
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I.  INTRODUCTION 

 

 The standard approach for Option valuation is based on a suitable specification of a stochastic process for the 

underlying asset. Historically, the protagonist role in describing the evolution of the market prices has been played by 

the continuous diffusion process. More models for the stochastic dynamics have been proposed market problems, such 

as Jump-diffusion models and Levy models and so on. We shall focus our attention on the Black-Scholes Model [3]. 

 

 The free arbitrage opportunity hold a powerful appeal, and provided a foundation for a large finance literature 

on arbitrage-free models that started with Vasicek(1977) and Cox, Ingersoll and Ross(1985). Their models specify the 

risk-neutral evolution of the underlying yield-curve as well as the dynamic of the risk premia. 

Financial derivative is core area of financial mathematics. In 1972, Black and Scholes tested the result of their model 

by using the data of Over-the-Counter Market(OTC), they found that result of their Model give tower values than the 

actual Market values. 

 

 Roll and Shastri(1973) found that these differences created due to the imperfect protection of dividend in the OTC 

market. Black and Scholes (1973) therefore used Itô’s lemma mathematical tools which are used to calculate type of 

stochastic process that also provides helps in the derivation of Black-Scholes formula. 

 In 1973, Black and Scholes then published their analysis of European Call option in a paper tittled ―The pricing of 

Options and Corporate Liabilities. Robert C. M (1975) that validity of Black-ScholesOption pricing formula depends 

on the capability of investors to follow a dynamic portfolio strategy in the stock that replicates the payoff structure to 

the Option. The critical assumption required for such a strategy to be feasible, is that the underlying stock return 

dynamics can be described by a stochastic process with a continuous sample path. Although in 1996, Duffie and Kan 

affine that the version of Arbitrage-free models are popular and yield a convenient linear functions of underlying latent 

factors with parameters that can be calculated from simple system of differential equations. Unfortunately, the 

canonical affine Arbitrage-free models often exhibit poor empirical time series performance, especially when 

forecasting future yield, Duffee (2002). (See Jens H. E.Francis. X.D and Glenn.D.R[7]), Jens. H.E et al [7] further 

Affine Arbitrage-free Class of Nelson- Siegel Term Structure Model where they derived the class affine arbitrage-free 

dynamic term structure models that approximate the widely-used Nelson- Siegel yield curved specification which can 

be expressed as slightly restricted version of the canonical representation of the three-factor affine arbitrage-free model. 

Many Authors have contributed on arbitrage Marketas reviewed in Paul G and XiaoliangZ[17] that a major 

development in the modeling of interest rates for pricing term structure derivatives is the emergence of models that 
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incorporate lognormal volatilities for forward rates while keeping rates stable. It was noted by Heath, Jarrow, and 

Morton [12] that in the general class of models they developed based on continuously compounded forward rates, 

lognormal volatilities lead to rates that becomeinfinite in finite time with positive probability. By working instead with 

various types of discretely compounded rates,Sandmann and Sondermann [18,19], Brace et al. [4], Goldys et al. [8], 

Miltersen et al. [15], Musiela and Rutkowski [16], and Jamshidian [10,11] have overcome this difficulty and developed 

well-posed models that indeed admit deterministic diffusion coefficients for the logarithms of forward rates — i.e., 

lognormal volatilities. The rates themselves are not simultaneously lognormal, but each becomes lognormal under an 

appropriate change of measure. This class of models — often referred to as market models because of their consistency 

with market conventions — have three principal attractions 

 

II.STOCHASTIC DIFFERENTIAL EQUATIONS 

 

Stochastic Differential Equations (SDEs) are differential equations where stochastic process represents one or more 

terms and, as a result consequence; the resultant solution will also be stochastic [3]. As more realistic, Mathematical 

Models become required to take into account random effects and influences in real world systems and SDEs have 

become essential in the accurate description of such situations [2]. The solutions are continuous-time stochastic 

processes and methods for the computational solution of stochastic differential equation are based on similar techniques 

for stochastic dynamic [3]. 

The aim of this work is to provide a systematic frame work for an understanding of the basic concepts and 

mathematical tools needed for the development and implementation of Numerical valuation for financial derivative 

which has become a standard model for financial quantities such as asset prices, interest rate and their derivatives. 

Unlike deterministic models such as ODEs, which have a unique solution for each approximate initial condition. SDEs 

have solutions that are continuous-time stochastic process. It is the equation in which one or more of it terms is a 

stochastic process, thus, resulting in a solution which itself a stochastic process. It can be use to model the randomness 

of the underlying asset in financial derivative because they give a formal model of how an underlying asset’s price 

changes overtime [1] 

Starting  with some fundamental concept from calculus that are needed for this work. We consider a general SDE, of 

the form 

𝑑𝑋t= µ 𝑡, 𝑥 𝑑𝑡 + 𝜎 𝑡, 𝑥 𝑑𝑊t𝑋 0 = 𝑋0 0 ≤ 𝑡 ≤ 𝑇                        (1)  

Where µ 𝑡, 𝑥  is the deterministic or drift coefficient and 𝜎 𝑡, 𝑥  is the diffusion (Noise) where 𝑑𝑊 t is the an 

innovation term representing unpredictable events that occur during the finitesimal interval 𝑑𝑡 . while𝑊t  is called a 

Wiener process [4]. 

     If the diffusion term does not depend on 𝑋t, we say that equation (1) is additive Noise,otherwise, the equation has 

multiplicative Noise. The Wiener process, named after Norber is an essential instrument for stochastic process by 

botanist Brown in 1827, commonly called Brownian Motion.  

A Wiener process 𝑊 = 𝑊𝑡 , 0 ≤ 𝑡 ≤ 𝑇  is a Gaussian process that depends commonly on time such that 

1.   𝑊 0 = 0(with probability one)  

2.  For 0 ≤ 𝑡 ≤ 𝑇,  𝐸 𝑊 𝑡  = 0and for  0 ≤ 𝑡 ≤ 𝑇,  𝑉𝑎𝑟 𝑊 𝑡 − 𝑊 𝑠  = 𝑡 − 𝑠 

3.For0 ≤ 𝑠 < 𝑡 < 𝑢 < 𝑣 ≤ 𝑇,  the increments 𝑊 𝑡 − 𝑊(𝑠)and 𝑊 𝑣 − 𝑊(𝑢)  are independent. The corresponding 

stochastic integral to (1) above is  

𝑋𝑡 = 𝑋0 +  𝜇(
𝑡

𝑡𝑜

𝑠, 𝑥)𝑑𝑠 +  𝜎 𝑠, 𝑥 𝑑𝑊𝑆

𝑡

𝑡𝑜

              (2) 

Where the last integralS is called Itô integral. 

      To solve SDEs analytically we introduce the chain’s rule for stochastic differential called Itô’s lemma [1]  

 

III. 𝐈𝐓Ô’S LEMMA 

 

We take into consideration an Itô’s lemma by assuming 𝐹(𝑥, 𝑡) be a twice differentiable function of t and of the 

random process Xtfollows the Itô process (1) of the form 

𝑑𝑋𝑡= 𝜇𝑡𝑑𝑡  +    𝜎𝑡𝑑𝑊𝑡          𝑡 ≥ 0                                               (3) 

then 

𝑑𝐹𝑡 =  
𝜕𝐹

𝜕𝑋𝑡

𝑋𝑡𝑑𝑡 +  
𝜕𝐹

𝜕𝑡
𝑑𝑡 +   

1

2

𝜕2𝐹

𝜕𝑋𝑡
2 𝜎𝑡

2𝑑𝑡                                      (4) 
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Putting  (3) into (4) for 𝑋𝑡𝑑𝑡 and by using relevant stochastic differential equation, we have  

𝑑𝐹𝑡 =  
𝜕𝐹

𝜕𝑆𝑡

𝜇𝑡  +   
𝜕𝐹

𝜕𝑡
 +   

1

2

𝜕2𝐹

𝜕𝑋𝑡
2 𝜎𝑡

2 𝑑𝑡 +   
𝜕𝐹

𝜕𝑋𝑡

𝜎𝑡𝑑𝑊𝑡        (5) 

Supposing the variance 𝑋 𝑡  follows a geometric Brownian motion and obeys a stochastic differential equation (1), 

then the Itô’s lemma for any of the function 𝐹(𝑋, 𝑡) is given as 

𝑑𝐹 𝑋, 𝑡 =  
𝜕𝐹

𝜕𝑥
𝜇𝑋 +  

𝜕𝐹

𝜕𝑡
 +

1

2

𝜕2𝐹

𝜕𝑥2
𝜎2𝑋2 𝑑𝑡 + 

𝜕𝐹

𝜕𝑋
𝜎𝑋𝑑𝑊                        (6) 

Where 𝜇 and 𝜎 are constants. We next consider the log-normal distribution, for a stock price process s.Let  𝐹 𝑋, 𝑡 =
𝑙𝑜𝑔𝑋, then 

𝜕𝐹

𝜕𝑋
=  

1

𝑋
 ,      

𝜕𝐹

𝜕𝑡
= 0         𝑎𝑛𝑑     

𝜕2𝐹

𝜕𝑥2
=

−1

𝑋2
   (7) 

Putting (7) in (6) and by integration, it is trivial that 

𝑋𝑇 = 𝑋0𝐸𝑥𝑝   𝜇 −
𝜎2

2
 𝑇 +  𝜎𝑍 𝑇                                      (8) 

Where 𝑍~𝑁 0,1 . Therefore, it is obvious that stock dynamics follows a log-normal distribution [5], which shows the 

evolution of the stock price in a Geometric Brownian Motion path using (8) and this graph of simulated data below 

enhances the understanding of the stochastic behaviours of the underlying assets and assumption that stock returns are 

log-normally distributed. 

 

 

 
     Days 

Simulation of a geometric Brownian Motion path with 𝑋𝑜 = 100, 𝜎 = 0.20, 𝜇 = 0.10, 𝑎𝑛𝑑 𝑁 = 300  as samples 

drawn from the standard normal distribution   

    

IV. MARKET MODEL 

 

As a model of a financial market, we consider a pair of assets: a nourisky asset (bank account) B, and a risk asset (stock) 

which may be represented by their prices B(t) and S(t) ,𝑡 ∈ ℝ+ . In this case, one  speaks of a (B,S)-Market with 

continuous time. Here, the risky component of the (B,S)-Market may be Multidimensional [6] 

   The assets B and S will be called underlying assets or underlying securities 

We describe the dynamic of the processes as follows 

𝑑𝐵 𝑡 =  𝑟𝐵 𝑡 𝑑 

𝐵 0 =  1 

and 

𝑑𝑆 𝑡 =  𝑆(𝑡)(𝜇𝑑𝑡 + 𝜎𝑑𝑊 𝑡 ) 

                                                       𝑆 0 =  𝑆0                                                                                         (9) 
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Where r is theinterest rate, 𝜇 is the drift parameter and 𝜎 is the volatility all assumed to be constant. We get 

𝐵 𝑡 =  ℮𝑟𝑡  

and 

𝑆 𝑡 =  𝑆0 exp   𝜇 −
𝜎2

2
 𝑡 +  𝜎𝑊 𝑡                                  (10) 

We consider the risky asset 𝑆 on a filtered probability space(𝛺, 𝛽, 𝜇, 𝔽), where the filtration 𝐹 = { 𝛽𝑡 : 𝑡 ∈ ℝ+ } is given 

by  

𝛽𝑡 =  𝜎(𝑊 𝑠 : 0 ≤ 𝑠 ≤ 𝑡) 

slightly enlarged to satisfy the usual conditions. Then, the stochastic process 𝑆 is adapted and strictly positives. We 

called the market model sketched above the Black-Scholes Model. We therefore deduced the Black-Scholes formula as 

follows. 

 

V.BLACK-SCHOLES FORMULA 

 

As an illustrative example of the use of SDE for Option pricing, we consider the European Call(Put) whose value at 

expiration time T, is  𝑀𝑎𝑥 𝑆 𝑇 − 𝐾, 0        (𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦 𝑀𝑎𝑥 𝐾 − 𝑆 𝑇 , 0 ) 

Where 𝑆 𝑇  is the price of the underlying stock, 𝐾 is the Strike price. The non-arbitrage assumptions of Black-Scholes 

theory imply that the present values of such an option are 

𝐶𝐸 𝑆, 𝑇, 𝐾 = ℮−𝑟𝑇𝔼(𝑀𝑎𝑥 𝑆 𝑇 − 𝐾, 0 ) 
and 

𝑃𝐸 𝑆, 𝑇, 𝐾 = ℮−𝑟𝑇𝔼 𝑀𝑎𝑥 𝐾 − 𝑆 𝑇 , 0                              (11) 

Where r is the fixed prevailing interest rate during the time interval[0, 𝑇], and where the underlying stock price 𝑆 𝑇  

satisfies the stochastic differential equation (1) of the form 

𝑑𝑆 = 𝑟𝑆𝑑𝑡 + 𝜎𝑆𝑑𝑊𝑡  
The value of Call Option can be determined by calculating the expected value (11) explicitly [6], we have             

𝐶𝐸 𝑆, 𝑇, 𝐾 = 𝑆𝑁 𝑑1 − 𝐾℮−𝑟𝑇𝑁(𝑑2) 

Using Put-Callparity 𝑃𝐸 − 𝐶𝐸 = 𝐾℮−𝑟𝑇 − 𝑆,we have 

𝑃𝐸 𝑆, 𝑇, 𝐾 = 𝐾℮−𝑟𝑇𝑁 −𝑑2 − 𝑆𝑁 −𝑑1  
Where 

𝑑1 =
log  

𝑆

𝐾
 +   𝑟  + 

1

2
𝜎 𝑇

𝜎 𝑇
and𝑑1 =

log  
𝑆

𝐾
 +   𝑟−

1

2
𝜎 𝑇

𝜎 𝑇
 

We therefore consider some basic definitions that will aid the completeness of Black-Scholes Model.[5,7]  

 

VI. MARTINGALES 

 

We consider (Ω, 𝛽, 𝜇) be a complete probability space and 𝔽 𝔅 =  𝔅𝑡 : 𝑡 ∈  0, ∞   be a family of sub 𝜎 − 𝑎𝑙𝑔𝑒𝑏𝑟𝑎𝑠 

of 𝔅 with the following axions 

i. 𝔅. Contains all the 𝜇 − 𝑛𝑢𝑙𝑙 member of 𝔅; 

ii. 𝔅𝑠 ⊆ 𝔅𝑡  whenever 𝑡 > 𝑠 ≥ 0, 

iii. 𝔽 𝔅  is right continuous in the sense 𝔅𝑡+
= 𝔅𝑡 , 𝑡 ≥ 0 where 𝔅𝑡+

=  𝔅𝑠𝑠>𝑡 . 

Then, 𝔽 𝔅 =  𝔅𝑡 : 𝑡 ∈  0, ∞  is referred to as filteration of 𝔅  and  Ω, 𝛽, 𝜇, 𝔽 𝔅   is a stochastic basis (filtered 

probability space). 

Definition 1. Assuming  Ω, 𝛽, 𝜇, 𝔽 𝔅   for a filtered probability space with                     𝔽 𝔅 =  𝔅𝑡 : 𝑡 ∈  0, ∞   and 

 𝑋 𝑡 : 𝑡 ∈  0, ∞   a stochastic process in (Ω, 𝛽, 𝜇) then 𝑋 is said to be adapted to be filtration 𝔽 𝔅  if 𝑋 𝑡  is 

measurable with respect to 𝔅𝑡 . 
Definition 2. We equally consider {𝑋 𝑡 : 𝑡 ≥ 0} being an adapted ℝ − 𝑣𝑎𝑙𝑢𝑒𝑑 stochastic process on a filtered 

probability space  Ω, 𝛽, 𝜇, 𝔽 𝔅  . Then X is referred to as 
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i. Sub martingale if 𝑋 𝑡  is integrable for each 𝑡 ≥ 0  and 𝐸 𝑋 𝑡  𝔅𝑠 ≥ 𝑋 𝑠   𝑎𝑙𝑚𝑜𝑠𝑡 𝑠𝑢𝑟𝑒𝑙𝑦whenever 

𝑡 > 𝑠. 

ii. Super martingale if  𝑋 𝑡 ∈ 𝐿′ Ω, 𝛽, 𝜇  for each 𝑡 ≥ 0 , 𝐸 𝑋 𝑡  𝔅𝑠 ≥ 𝑋 𝑠   𝑎𝑙𝑚𝑜𝑠𝑡 𝑠𝑢𝑟𝑒𝑙𝑦  whenever 

𝑡 > 𝑠. 

iii. Martingale if 𝑋  is both a submartingale and super martingale for 𝑋 𝑡 ∈ 𝐿′ Ω, 𝛽, 𝜇  for each 

𝐸 𝑋 𝑡  𝔅𝑠 ≥ 𝑋 𝑠   𝑎𝑙𝑚𝑜𝑠𝑡 𝑠𝑢𝑟𝑒𝑙𝑦whenever 𝑡 > 𝑠. 

 

   

Definition. Consider trading within the time horizon [0, 𝑡] and the filtered probability space ((Ω, 𝛽, 𝜇, 𝔽 𝔅 ) . Suppose 

𝔅𝑇 = 𝜎 (  𝔅𝑡𝑡𝜖  0,𝑇 ) . A probability measure  𝜇∗ on  Ω, 𝔅𝑇  is an Equivalent Martingale Measure if 𝜇∗ is equivalent 

to 𝜇 and the discounted price process  

  𝑆  𝑡 = ℮−𝑟𝑡𝑆 𝑡 , 𝑡𝜖[0, 𝑇]. 
We denote the set of all equivalent martingale measure by 𝕄 𝜇  and show that arbitrage opportunities are precluded in 

a market model if there exists at least one equivalent martingale measure (𝕄 𝜇 ≠ 0 ) 

 

   VII.ARBITRAGE-FREE MARKET MODEL 

 

 We consider  𝕄 𝜇 ≠  ∅ , and assumed 𝜇∗  be a probability measure on (Ω, 𝛽)  such that 𝑊 𝑡  has an 𝑁(𝑚𝑡, 𝑡) 

distribution for 𝑊 𝑡 = 𝑊 𝑡 − 𝑚𝑡 being a 𝜇∗ − 𝐵𝑟𝑜𝑤𝑛𝑖𝑎𝑛 𝑀𝑜𝑡𝑖𝑜𝑛 for 0 ≤ 𝑠 < 𝑡, 

𝐸𝜇 ∗ 𝑆  𝑡  𝐵𝑠 = 𝐸𝜇 ∗ 𝑆  𝑡  𝜎(𝑊𝑠)  

   = 𝐸𝜇 ∗(𝑆0 exp   𝜆 − 𝑟 −
𝜎2

2
 𝑡 + 𝜎𝑊 𝑡 )|𝜎 𝑊𝑠 ) 

 =(𝑆0 exp   𝜆 − 𝑟 −
𝜎2

2
 𝑡)𝐸𝜇 ∗(exp(𝜎𝑊 𝑡 )|𝜎 𝑊𝑠 ) 

 = (𝑆0 exp   𝜆 − 𝑟 −
𝜎2

2
 𝑡)exp(𝜎𝑊 𝑠 )𝐸𝜇 ∗(exp(𝜎(𝑊 𝑡 − 𝑊(𝑠)|𝜎 𝑊𝑠 ) 

 =  𝑆0 exp   𝜆 − 𝑟 −
𝜎2

2
 𝑡 exp 𝜎𝑊 𝑠  𝔼𝜇 ∗ exp 𝜎𝑊 𝑡 − 𝑠   . 

 =  𝑆0 exp   𝜆 − 𝑟 −
𝜎2

2
 𝑡 exp 𝜎𝑊 𝑠  exp  𝑚 𝑡 − 𝑠 𝜎 +

𝜎2

2
 𝑡 − 𝑠  . 

 = 𝑆0 exp   𝜆 − 𝑟 𝑡 + 𝑚𝜎 𝑡 − 𝑠 −
𝜎2𝑠

2
+ 𝜎𝑊 𝑠  . 

Taking 𝑚 =
𝑟−𝜆

𝜎
,  we have 

𝐸𝜇 ∗ 𝑆  𝑡  𝐵𝑠 = 𝑆0 exp   𝜆 − 𝑟 −
𝜎2

2
 𝑡 + 𝜎𝑊 𝑠 ) 

   = 𝑆  𝑡  

Show that the discounted price 𝑆  is a martingale under  𝜇∗  𝜇∗𝜖𝕄 𝜇  . There is at least one equivalent measure 𝜇∗, 

showing that the Black-Scholes market model is arbitrage-free. 

Under the probability measure  𝜇∗ in the last result, we have the dynamic of the process 𝑋 as 

  𝑑𝑆𝑡 = 𝑆𝑡 𝜆𝑑𝑡 + 𝜎𝑑𝑊𝑡  

  = 𝑆𝑡 𝜆𝑑𝑡 + 𝜎𝑑(𝑊  𝑡 + 𝑚𝑡 ) 

  = 𝑆𝑡  𝜆𝑑𝑡 + 𝑚𝜎𝑑𝑡 + 𝜎𝑑𝑊  𝑡   

  = 𝑆𝑡  𝑟𝑑𝑡 + 𝜎𝑑𝑊  𝑡   

with  𝑚 =
𝑟−𝜆

𝜎
 for which the drift  𝜆 is replaced by the risk-free interest rate 𝑟. 
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VIII. SUMMARY AND CONCLUSION 

 

In this paper, we investigated the Black-Scholes model for Option valuation and concentrated our 

investigation on the fact that the Model is arbitrage-free from option valuation. 

In reality, financialmarkets are not frictionless generally.This paper has examined the Black and Scholesmodel 

as one of the Mathematical tools for option valuation assumed to be simplest model for option pricing.This Model 

therefore attempts to simplify the markets for both financial assets and derivatives into a set of mathematical rules for a 

trading strategy of an equivalent martingale measure 𝕄 𝜇  that ensured at least one equivalent measure  𝜇∗𝜖𝕄 𝜇  as 

claimed.  

This model also serves as a basis for a wide range of analysis of markets and reduces the risk of the market 

transaction. 
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