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ABSTRACT: This paper is concerned with the analysis of wavelet based Schur complement method for numerical 

solution of partial differential equations. The exquisiteness of adopting the wavelet idea here lies in avoiding the 

somewhat difficult task of ensuring the invertiblilty of matrices and in detecting domain of sharp transitions, wavelets 

do this automatically for a large class of operators. The zest of new work follows from the fact that any first-scale 

compressed matrices can be conveniently processed before applying the next scale. The main advantage of this method 

is the matrix compression and faster convergence of solutions of partial differential equations. The methodology is 

demonstrated with the help of very simple steady state two-dimensional advection-dispersion equation. The proposed 

method is compared with the standard method of finite element. 
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I. INTRODUCTION 

 

There are so many interesting physical systems which are characterized by the presence of localized structure or sharp 

transition, which might occur anywhere in the domain and advection-dispersion equation exhibits such discontinuity 

(shocks) [1-2]. To capture these sharp transitions in the solution, these domains would require very fine resolution. 

Popular methods such as finite element, so-called meshless and recently developed wavelet methods, to solve these 

problems efficiently, use adaptive grid techniques [3-6]. Wavelets based Schur complement techniques can also be 

profitably applied in solving partial differential equations useful in many applications, including simulation, animation, 

computer vision, etc. Though this technique is well understood, a lot of work has to be done for efficient 

implementation in complex domain, in particular to reduce computational time.  

 

In this method, the finest scale finite element solution space is projected onto the scaling and wavelet spaces resulting 

in the decomposition of high- and low-scale components. Repetition of such a projection results in multi-scale 

decomposition of the fine scale solution. In the proposed wavelet projection method, the fine scale solution can be 

obtained by any other numerical method also. This approach is motivated by the interesting and stimulating paper by 

Vasilyev and Paolucci [7] who have developed an efficient approach by combining the advantages of wavelets and 

finite difference method.   Subsequently the properties of the wavelet functions are exploited to eliminate the nodes 

from the smooth region where the wavelet coefficients will not exceed a preset tolerance. This wavelet-based multi-

scale transformation hierarchically filters out the less significant part of the solution, and thus provides an effective 

framework for the selection of significant part of the solution. In this process, the ‘big’ coefficient matrix at the finest 

level will be calculated once for complete domain whereas the ‘small’ adaptive compressed coefficient matrix for a 

priory known localized zone of high gradient, which will be considerably less expensive to solve, will be used for the 

solution. 

 

All linear and nonlinear systems of equations give rise to matrix computation. As the computer power upsurges and 

high resolution simulations are attempted, a method can reach its applicability limits quickly and hence there is a 

constant demand for new and fast matrix solvers. The motivation of this work follows from the observation that any 

one-scale compressed matrices can be used conveniently processed before applying the next scale. Proposed method 
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will be designed from level-by-level wavelets, which is related to BCR work [8] exploring fully the sparsity exhibited. 

In this method, the regular pattern generated wavelets scales are not destroyed by the new scales as in BCR work. This 

fundamental but simple idea will be combined with Schur complement method. The vital assumption for this proposed 

method to work is invertibility of an approximate band matrix.   

 

 

In practice, this method works equally well operators except the type for which we can provide proof.  

Let R be a bounded operator: 

.









DC

BA
R                                                                                                                             (1)  

Assume that D is invertible. Then the first Schur complement is the operator 
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 BDARS                 (2)
  

Assume that A is invertible. Then the second Schur complement is the operator 

 B.)( 1
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 CADRS                 (3)
  

The reason due to which Schur complement method is useful for spectral problem is following statement [9]: 

Suppose that D is invertible, then R is invertible if and only if )(1 RS is invertible. Similarly, if A is invertible, then R 

is invertible if and only if )(2 RS is invertible. The inverse is computed then by the formula 
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where ).(11 RSS   

The Schur complement method also known as sub structuring method widely used in structural mechanics to solve 

large-scale systems. In this paper, the schur complement is used to invert a matrix and to reduce number of iterations 

i.e. for faster convergence. Though the I/O increases the time of inverting these matrices, this does not lessen the value 

of this method since it will invert matrices that are too large to reside in memory. This method hinges on blocking the 

matrix R and using the schur complement to invert the blocked matrix. Despite the existence of these high memory 

systems, the Schur complement methods still finds its application through parallel computing. 

 

Matrix inversion is a major example of areas in mathematics and engineering where computers proved to be 

indispensable. It is difficult to take inverse of excessively large matrix.  In this paper, we are going to analyze 

convergence behavior of wavelet schur complement method. To check accuracy of this method a comparison of this 

method is provided with already existing method. And to experience advantage of the method we are comparing the 

solution of the simple example with and without wavelets.  

 

The rest of the paper is organized as follows. Section II gives brief introduction of the multiresolution analysis. 

Wavelet-splitting is discussed in section III. In section IV, Wavelet Schur complement method is discussed. Finally 

Section V contains numerical example of application to the new method to the solution of simple one-dimensional bar 

problem. Section VI  includes conclusion.  

 

II. MULTIRESOLUTION ANALYSIS 

 

A linear span of a 
 



jj xf )}({  for )(2 RL  is dense in )(2 RL
 
then it is called Riesz basis  and there exist positive 

constants  YX  (for any linear combination) such that 
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                               (5)  

where  
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A function )(2 RLf  is called R-function if the sequence defined by 

 2,1,0,),2(2 2/

,  kjkxjj

kj              (7)  

form a Riesz basis in )(2 RL . 

 

Direct sum of )(2 RL  is also generated by wavelets. The partial sums of this direct sum will generate a function called 

the scaling function, characterized by the multiresolution analysis (MRA) property of a wavelet. Recall that a wavelet 

function (7) is associated with its basis functions 2,1,0,),2(2 2/

,  kjkxjj

kj  , where the first 

index j refers to the basis resolution (dilation of ψ) while the second index k implements the space covering (translation 

of ψ). 

 

Let jW  be the subspace formed by those precisely, the closure of linear span of wavelet function 

 }2,1,0|{ ,)(2
 kclosW kjLj 

R
 

Define the closed subspace (the partial sum of s'W  up to j − 1) for any j 
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The clearly (as all basis functions  kj,
 
are included) 
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We now consider how jV  can be generated by some R-function )(x   

 }2,1,0|{ ,)(2
 kclosV kjLj 

R
                                                                                    (10)  

 

with  2,1,0,),2(2 2/

,  kjkxjj

kj 
 

 

A function )(2 RL  is called a multiresolution analysis (MRA) and therefore a scaling function, if the sequence of 

subspaces Vj as from (10) satisfies 
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 )}({}{ ,0 kxk   forms a Riesz basis for the subspaces 0V . 
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Approximating a function )(2 RLf   by its projection fPj
onto the space Vj  and the projection of  f  on jW  as 

fQ j .Then we have 

.11 fQfPfP jjj                                       (11)  

III. WAVELET SPLITTING OF AN OPERATOR 

 

As previously done, following the same pattern [8, 10-12], the filter coefficient cj’s and dj’s define the scaling function

)(x  and wavelet function ).(x  Further, the dilation and translation of )(x  and )(x  define a multiresolution 

analysis  for 2L  in d-dimensions, 
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In numerical realization, we select a finite dimensional space (in finest scale) as our approximation space to the infinite 

decomposition of L2 in (12), i.e. effectively 
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is used to approximate )( d

2 RL . Consecutively, for a given operator 22: LLR  , its infinite and exact operator 

representation in wavelet bases 
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is approximated in V  by 
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where 
jVLP 2:  and 

jjjjj QVVLPPQ   121 :  are both projector operators. For brevity, define 

operators 
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Then one can observe that 

 .jjjjj DCBAR                  (17) 

Further observation based on 111 :   jjj VVR  and 
jjj WVV 1
is that wavelet coefficients of Rj+1 will be 

equivalently generated by block operator 
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Now we change the notation and consider the discretization of all continuous operators. Assume that A on the finest 

level (scale)  j  is of dimension n . Then dimension of matrices on a coarse level j is 
j 2/   for 

......2,1,0 j  The operator splitting in (18) for the case of d = 1 (higher dimensions can be discussed similarly 

[8,13]) corresponds to the two-dimensional wavelet transform 
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where the one level transform from  j + 1 to j (for any .....2,1,0j ) is 
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With rectangular matrices 
jP and 
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To observe a relationship between the above level-by-level form and the standard wavelet representation, define a 

square matrix of size nn   for any .....2,1,0j  
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where ;jj n    clearly;  0j  and  TT   Then the standard wavelet transform can be written as: 

 ,...... 11  TTTT                   (25) 

that transforms matrix R  into 
TTRTR 

~
. 

Thus the diagonal blocks of A
~

 are same as that of Aj of a level-by-level form. However off-diagonal blocks of the 

former are different from of the Bj and Cj of the latter. To gain some insight of the off-diagonal blocks of matrix A
~

 

with standard wavelet transform. 
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Clearly, the off-diagonal blocks of 
1

~
R  are perturbation of that of the level-by-level form off-diagonal blocks Bj and Cj; 

in fact the one sided transforms of the off-diagonal blocks are responsible for the resulting sparsity structure.  

 

IV. SCHUR COMPLEMENT METHOD WITH THE LEVEL-BY-LEVEL WAVELETS 

 

Wavelet Schur complement method for solving linear system bxR   defined on the finest scale V   i.e. 

  bxR                  (29)  

where RR   is of size nxnx   as discussed previously 
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In the decomposed form, 
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Using Schur complement method 
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So final solution we obtain  21; xx . 

 
V. RESULTS AND DISCUSSIONS 

 

Matrix compression and faster convergence are some reasons due to which wavelets expansions works with great 

success. In this paper, wavelet-Schur complement method is used for matrix compression and faster convergence. In 

this new method, the stiffness matrix possesses the desirable properties suitable for using Schur complement method.  

The partial differential equations are discretized in the space domain using linear elements, wavelet based finite 
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element method is used for analyses. In order to have a check accuracy and stability of the method, a comparative study 

is been carried out for one dimensional bar problem.  

 

 
 

The results for two dimensional steady state advection-dispersion equations are compared with standard finite element 

method and this is depicted in Figs. 1. It can be noted form the figure that there is good agreement among the results. In 

Fig. 2, corresponding wavelets coefficients is depicted, it can be observed that changes in wavelet coefficients are very 

small compared to the scaling coefficients and start well before the sudden jump. This helps in automatic grid 

refinement at the location of sudden jump. It can be easily observed from Fig. 3, that number of iteration taken by 

Schur complement method with wavelets is smaller than that without wavelets, which shows that wavelets Schur 

complement method converges faster than Schur complement method without wavelets. The computational time taken 

by Schur complement method with wavelets are compared with the results obtained by using Schur complement 

method without wavelets, and are shown in Fig. 4. It can be noted form the figures that time taken by Schur 

complement method with wavelets is lesser than that of Schur complement method without wavelets which shows that 

Wavelet Schur complement method is more efficient. The solution of two dimensional steady state advection-

dispersion equations establishes the efficacy of the proposed technique. The advantage of the method is not clearly 

visible due to simplicity of the problem taken. The methodology developed here can be extended to higher dimensional 

problems. 

 

VI. CONCLUSION 

 

The Wavelets Schur complement method presented here provides both speedup and memory effectiveness which can 

be qualified to the reduction in matrix sizes while taking inverse and number of iteration. Using this algorithm large-
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scale problems, which could not be solved in earlier studies, can now be solved. The proposed results give better results 

for larger systems and use of many sub domains (processor) do not decline the speedup. The choice of dividing a 

domain into subdomain is crucial. It directly affects the number of unknowns on the interface, computational loading of 

subdomains and hence the overall efficiency. The platform properties directly affect the efficiency of the algorithm. 

Therefore making a general statement about the efficiency of the algorithm by testing it on a single platform might lead 

unrealistic results. To avoid this, properties of the platform and algorithm must be studied carefully.   
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