ISSN: 2350-0328

International Journal of Advanced Research in Science,
Engineering and Technology
Vol. 1, Issue 4, November 2014

Stability Theorems for Stochastic Differential
Equations (S.D.E.'s) with Memory (Part 1)

Tagelsir A. Ahmed, J. A. Van Casteren
Department of Pure Mathematics,Faculty of Mathematical Sciences,University of Khartoum, Sudan
Department of Mathematics and Computer Science,University of Antwerp (UA), Middelheimlaan 1,2020 Antwerp,

Belgium

ABSTRACT:Here stochastic differential equations with memory means delay stochastic differential equations. In the
present work we have formulated an example of the main delay stochastic differential equation,see [2] and [11] and [9].
The example which we have considered is of the following form:

q0) . @l 0
o 2@ | = [ 0@ + [ e @) —x@)ds | g o (@l | gy,
4 (t) —(@) = x,(b) L

where the ordered triple (x;(t), x,(t),X") can be considered as representing position, velocity and history ofposition
respectively. We will call the space containing this triple "the history space X". In section two of thiswork we have
proved a stability theorem for a diffusion of a S.D.E. in R™. With a suitable choice of Lyapunovfunctional we have
proved that the motion will finally come to rest at the origin. In section three we haveextended the space R™ of section
two to a history space, i.e. to a space with three components; position,velocity and history of position. Also we
formulate our S.D.E. on this history space X and also we found thegenerator of the diffusion. The initiation of the
present work was suggested by Prof. Maassen,J.D.M.,KatholikUniversity of Nijmegen, The Netherlands.

I. INTRODUCTION

Stochastic Differential Equations with memory serve as models of noisy physical processes whose time evolution
depends on their past history. In physics, lazer dynamics with delayed feedback is often investigated as well as the
dynamics of noisy bistable systems with delay. In biophysics, stochastic equations are used to model delayed visual
feedback systems or human postural way. For more details see the website of Prof. Salah-E.A.Mohammed namely
“sfde.math.siu.edu’’. By “with memory” we mean a S.D.E. in which the initial process is defined on an interval of time
in the past and not at a particular point as in the ordinary S.D.E.’s.

Il. RELATED WORKS

In [4] Delfour and Mitter studied the existence and uniqueness of solutions of ordinary differential equationswith
constant delays and discontinuous initial data. In [9] Mohammed proved the existence and uniquenessof solutions for
stochastic functional differential equations (S.F.D.E.’S) with continuous initial data. Since forpractical reasons the
initial data may not be continuous, we have generalized the work of Mohammed to the casein which the initial data are
not necessarily continuous using the Hilbertian norm on R™ x L?([—1,0],R™) (n € N) instead of the supremum norm
on C([—1,0],R™). The first norm has advantages over the second one whendealing with the Markov property.
Moreover we establish a stronger version of the existence and uniquenesstheorem so obtained, See the M.Sc [2]. See
also chapter One in the Ph.D Thesis of Ahmed [1] and also on page 226 of [9].The website of Mohammed namely
“sfd.math.siu.edu”.The work in this paper can be consideredas a generalization of the work of Mizel and Trutzer in
[11].
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IILASTABILITY THEOREM IN R"

Here we shall prove some stability theorems for the solution process of a S.D.E. of the form
dX, = b(X,)dt + o(X,)dW, (111.1)
where b: R* —» R™ and : R® —» R (n > 1) are given by b(x) = —x and o(x) = al|x||,a? < %and W,is a normalized
n-dimensional Brownian motion based on some probability spacef2, and X, is an R™ valuedstochastic process.
Let V:R™ — R be a Lyapunov functional given by V (x) = %lellz. Let Q be an open subset of R™.Let T bethe exit

time from Q: T = inf{t:x, ¢ Q}and T = o if the motion does not hit the boundary of Q forever.
Put t(t) = tAt. Nowas b(x) = —x and a(x) = af|x||satisfy

IbCx) — bl = ll—x+ yll =[x = Il
And
lo(x) — oIl = lalllx|l — allyll
= alllx[l =yl
< allx —yll

thenb and o satisfy the Lipschitz condition. Also it is easy to see that b and o satisfy the linear growthcondition. Thus
the considered S.D.E. has a strongly unique solution x,. Then x, is a continuous strongMarkov process with weak
infinitesimal generator A and the operator A is given by

AfH)x) = —x-Vf(x) +§0c2IIx|I2 “Af(x),
wherefis twice continuously differentiable and bounded on Q.
In order to find AV (x), let us calculate

, 178 9 ayN ., )
V) =7 —||x|| (ax e axn)m L 4t x,2)
= §(2x1,2x2, v 2Xy) = (X1 Xg, 0, Xp) =X
2 2 62 1
AV = [ — + —— e =) . = (2 2, .. 2
(x) (6 1+6x2+ +axn) 2(x1 + X% 4+ x,2)

:E(2+2+"'+2)
=(1+1+-+1)=n.
Thus
1 2 2 2 n 2 2 2 n ’
AV(X)=—(X,X)+§0! llxll“n = —lx]| toa llx|l* = llx[[*{ ———1) <0,
and hence AV (x) <0 Vx € Q(as a2<3).

I11.1 Theorem:Let 7(t) = tAt and x,() = x;,,. Employing the above assumptions and setting we have thefollowing
forx = x5 €Q
i V (x,.;)iS @ non-negative supermartingale.
.. V(x)
. Px{suposw(xm) q} <= Vg > 0.
iii. There exists a random varlable v = 0 such that V(xr(t)) — vwith probability 1.

Proof:
i Letx € Q,thenasVistwicecontinuouslydifferentiableandboundedon@, and

alsot(t) = 7 A tisboundedandhenceEt(t) < o, thuswecanuseDynkin’sformulatoget
T(t)

ExV(xT(t)) =V(x)+E, f AV (xg)ds
0
(t)

EV(x,) = V(x) = E, f AV(x,)ds <0
0
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becauseAV(x,) <0 Vs < 7(t) as proved.Hence ExV(xT(t)) <V(&x)vx € Q, ie. V(x,) is a non-negative
supermartingale.

ii. This is just the martingale inequality.
iii. AsV (x,5) iS a non-negative supermartingale, it converges a.s. to a non-negative random variable, saywv.
We shall now show that v = 0i.e. V (x,) — 0as t — . To do this we shall find an expression forV (X,) = §||X||2

in terms of t and then take the limit as t — oo.Morespecifically, we shall show thatEV (X,) = E%llthl2 =
%E||X0||Ze("“2_2)twhere X, = x € Qand x # 0. Now since we have a? < % i.e. (2 —na?) > 0, thus

lim e(®@*-2)t = [im <#> =0
t—o t—o \e (2 na?)t

1
limEV(X,) = limEEllXollze("“z_z)t
t—>oo t—o0o
1
= S ElIXo|I? lim e (2"

= EIXl2-0=0
Now in order to prove that V(x,) - 0 as t — oo it remains to prove the following claim.
Claim:
E|IX |12 = El|Xo||?e(e*-2",
Proof of Claim.Rewrite the S.D.E. (111.1) in the form
dxt = —Xxldt + aX!dWw, (i=1,2,..,n)
Where X, = (X}, X2, ..., XDand W, = (W}, W2, ..., W/*), where the W,’s are n independent copies of the Brownian
motion.
To find d||X, ||, let us calculate

dw,, dw,) = Z(dW ) z dt = ndt. (1I1.2)
i=1
Now by using the Itomultlpllcatlon table

dt | aw,
dt| 0] 0
dw,] 0 | dt

We defined that
(dX,, dX,) = (al|X || dW,, al| X, |[dW,)
= a2||Xt||2<th:th>
= a?||X,||>ndtby(I11.2)
Now by using It6 formula we have
d”Xt”Z = Z(Xt'dXt> + <dXtidXt)
= 2(X,, —X.dt + al||X.||dW,) + na?||X,||*dt
= 2(X,, =X, dt) + 2(X,, a|| X, ||dW,) + na?||X,||*dt
= =2||1X,|I?dt + na?||X,||?dt + 2| X, || X, dW,
= (na® = 2)IX I*dt + 2a||X,|IX,dW,
Now
dE||X,||> = (naz — 2)E||Xt||2dt + E2a|| X, || X, EdW,
= (na? —2)E||X |2dt
(as EAW, = 0). Thus dE||X,||*> = (na® — 2)E||X,||*dt i.e. —(E||X 1) = (na? — 2)E||X,||* which is an ordinary
differential equation of the form

dy
i (na® —2)y, y = E|IX.|I?

d
& (na? —2)dt
y

Iny=ma?-2)+c
y = e(naz—Z)t .e€
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Hence y = c;e™@*=2)t andatt = 0,y = y, = E||X,||?. Hence E||X,]1? = E||X,]||2e®™«*~2),
IV.HISTORYSPACE,S.D.E.INHISTORYSPACEANDGENERATOR INHISTORY SPACE

Let x: R X Q — R be areal valued stochastic process defined on a probability space . Then the history of x up to time

t is given by the map x%: RT x Q - Rwhere x(s,w) = x(t —s,w) (s = 0). For simplicity we shall omit w and

write x!(s) = x(t —s). Let ¥: RT - R be a process such that & belongs to L?(R*, R, e *ds), i.e.fowfz(s)e_sds < o0,

1
LetX = R x R X L?(R™,R,e~5ds). For x = (x;,x,, %) € X we define ||x||xby |lx|ly = (xZ + x5 + fomfz(s)e_sds)z.
The above space X is the history space. We shall introduce a S.D.E. on the above history space X. The S.D.E.which we
shall introduce is a model describing the motion of a dangling spider (see [5]). Thus let us thinkof the two real valued
processesx; (t) and x, (t) as representing the position and the velocity (respectively) of the dangling spider at time ¢,
and think of % as representing the history of the position up to time t wherex € L(R*,R,e~%ds).
Let 0:X — R be the real valued function defined on X such that a(x) = al|%|| where x = (x1,x3, %) € Xand <
1. Let W, be a normalized one-dimensional Brownian motion. Now we are ready to formulate the S.D.E. wepromised
on the history space X, as follows:

Xq xZ(t) 0 t 0
d[ %)= —u®+ fe‘sf(x{(s)—xl(t))ds de + | @I®0 ) aw, (v.1)
52 xw) —xz(t)o 5 0

where the function x*:R™ —» R is defined by %'(s) = x{(s) —x;(t) = x,(t — s) —x;(t). In integrated form
equation (IV.1) reads as follows:

x1.(6) = %, (0) t Jy 260 -
x(0) = x2(0) | = | —Jy x@du+ [ e™ [y ()duds | | Jy allZN ) gy (IV.2)
xt(s) — x°(s) \ — [;@) (s)du — [ 2, (w)du ) v

Observe that the third row and the first row of the S.D.E. (IV. 1) are equivalent. This can be seen by observing that the
first row leads to equation (IV.3) and the third row leads to equation (IV. 4), and by comparing the left hand sides and
the right hand sides of the following two equations (IV. 3) and (IV. 4):

t

x1(t) — x,(0) = fxz(u)du. (1v.3)

0

We also have:
t

)
0= 9) = 1@ — 30 (=9) + 110) = = [ - (@ =) = x1@)du - [ %@du
0 0

= Jxlr(u—s)du— sz(u)du

0 0
t

x1(t = 5) = x1(t) = x1(=5) + x,(0) = x1(t = 5) — X1 (=) —fo(u)du (1v.4)

0
As we have done in section 2 we can also check that the above S.D.E. has a unique solution by checking theLipschitz
condition for b(x) and a(x) where

X2

® o 0
b(x) = <—x1+f0 e x(s)ds)and o(x) = <a|£)f||>’

—(®) —x2

Where x = (x1, x5, X). Again the S.D.E. (IV.2) can be written as
t t
X, =X, + f b(X,)du +fo(Xu)qu (Iv.5)
0

0
Where
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x1 ()
X, =% ®)
ft

Now let x,y € X where x = (xq,x,,X)and y = (y1,¥,,¥), then

o0

Ib(x) = bWIIF < 2lx; —y11* + 3lxz — ¥, 1 + 2 fe‘s(i(S) — 3(s))ds
0
But as fowe‘sds = 1 then by Hélder inequality we have

0 2 © ©

2 o
+2 f e~ (@ () + (y)’(s))2 ds.
0

f e‘s(f(s) — y(s))ds

0

< J 1-e7%ds Je_s(f(s) — y(s))zds

0 0

< f e‘s(f(s) —y(s))zds

0

And
[ee] , ) 2 *® 2
f e (-® ) + ) ) ds:f e [(-%() + () | ds
0 0
= [ e [~(-5) + )] s
0
=fe's(f(5) —}N’(S))st
Hence O

0

IbG) = bO)IIE < 2lxy — 3117 + 3lxz — y2* + 4[ e (2(s) - 7()) ds
0

- - 2
<4 [|x1 -y 2+ lx =y * + J e_s(x(s) - Y(S)) dsl
0
< llx = yliz-

Also it is clear that o(x) is also Lipschitz and the linear growth condition is automatically satisfied. Thus band
o satisfy the following inequalities:

] 16l + llo()llx < Ki(llxllx + 1) (v.6)
an

Ib(x) —bWllx + la(x) —aNlx < Kz (llx — yllx) uv.7)

wherex,y € X and K; and K, are constants. Hence the considered S.D.E. (1V.1) has a unique strong solutionX,. Thus
X, is a continuous strong Markov process.
Now we shall find the generator A for the above diffusion X,restricting attention to the Lyapunov functionV:X —

Rwhere V(x) = % |l%]1%. We shall use the definition of the generator in the form AV (x) = ;—tEV(Xg‘)ltZO.
Now
1 2
V(Xt) = E ”Xt”X
1 o0
=5 x1 (1) + x, ()% + f e~S%(s)%ds (Iv.8)
0

o0

= 2 0@ + 7 + [t -n@yas |
0

Copyright to IJARSET WwWw.ijarset.com 188


http://www.ijarset.com/

ISSN: 2350-0328

International Journal of Advanced Research in Science,
Engineering and Technology
Vol. 1, Issue 4, November 2014

Let Q = {x:V(x) < q} ie. @ = {x:2llxll} < q} = {x: llxllx < {/2q}. Thus Q i bounded subset of X. Now let T be the
exit time from Q, i.e. T = inf{t: x, ¢ Q} and let T = o if the motion does not hit the boundary of Q forever.
Suppose that the motion starts at point X, = x € Q. We wish to calculate dV(X{) = d%llthl)Z(. We have by

1t6’sformula

dllX 1% = 2(X,, dX,) + (dX,, dX,). (1v.9)
Now
x;(£) x,(t)dt
X, dx,) = | 2@ |. [ (@ + [T eTF (S)ds)dt + allzll dw,
xt —(®)'dt — x,(t)dt

= x1 (t)x, () dt — x1 () x, (t)dt + x5 (t) J. e Sxt(s)dsdt — (%%, (&%) )dt + a||%||x, (t)dW,

(xz @® f =S ~t(s)ds) dt

= —(x', (&") )dt + allxllxz t)dw,.
Now denoting ¢ by fwe have:

F @) = (. f) = j £(s) f(s)e~ds

o0

je Sd (s)

0

o0

1 R |
=310 +3 f e f2(s)
1 0 o0
=3[ e =3[R
0 0

o0

1

5[ @ -nwyas
0

Note e‘S%fz(s)|: = 0 because e™* = 0 and %(0) < oo and £(0) = 1 (0) = x{(0) — x,(t) = x, () — x,(¢) = 0.

Hence

o0

1
(X, dX,) = _Ef e S(%(s))%dsdt + a||xt||x, (£)dW, IV.10

0
Now by using Itémultiplication table we have
(dX,,dX,) = a?||zt||2dt. (IV.11)
Thus by equations (IV.9), (IV.10) and (IV.11) we get

AllX, Il = - j e (%1(s))2dsdt + 2al|Zt |lx, () dW, + a?||%¢||2dt. (v.12)

0
Now by (IV.8) we have
1
v (X,) = d IIX. Ik

0

1 1
= _Ef e S (%' (s))%dsdt + Eazllitllzdt + al|®||x, () dW,. (IvV.13)

0
Now by taking expectation on both sides of (IV.13) and using the fact that
Eal|%|lx,(0)dW, = Eal|%*||lx, () EdW,
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we get the generator of the diffusion for V (X,) as follows:

1
AV (X,) =fe—5f2(s)ds+§a2||f||2

0
1
=fe‘sfz(s)ds+§a2fe_sf2(s)ds
w 0 0
1
= E(oc2 - 1)[ e S%%(s)ds (IV.14)
1 0
=@ = DIl
A REMARKS
a) All the results which we have established in this work can be extended by replacing the Brownian motion W

by another process Z:[0,a] X  — Rwhich is a continuous martingale adaptedto{f’};cj0,; and has independent
increments and satisfies with some constant Kthe inequalities
|E[Z(t) — Z(ONEF,| < K(t — s)andE(1Z(t) — Z(s)I*|F,|) < K(t—s)for0 < s <t <a.

Observe that the above properties of Z which we have just mentioned are the only properties of Wwhich we have used
(in case of Brownian motion) to prove the results which we have obtained in this work.See [2].
b) All the results which we have established in this work, can be extended to a processes f,g:[0,a] X
R" X L(J,R™) - L(R™,R™) (m,n € N) instead of the processes f,g:[0,a] X R® X L*(J,R™) —» R™(n € N), and
instead of the Brownian motion Wwe use the process Z: [0, a] X Q — R™ which is a martingale adapted to{f", };cjo,q},
continuous on [0, a], and has independent increments and satisfies for some constant K the inequalities

|E[Z(@t) — Z(ONIF,| < K(t — s)andE(1Z() — Z()I?|F,|) < K(t —s) for 0 < s <t < a. See [2].
c) All the lemmas and theorems in this work hold for any delay interval ] = [-7,0) (r = 0).See [2].
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