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ABSTRACT: The sextic non-homogeneous equation with six  unknowns represented by the Diophantine equation 

x6 − y6 − 2z3 =  k2 + s2 2n T4(w2 − p2) is analyzed for its patterns of non-zero distinct integral solutions are 

illustrated.  Various interesting relations between the solutions and special numbers, namely polygonal numbers, 

Pyramidal numbers, Jacobsthal numbers, Jacobsthal-Lucas number are exhibited. 
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I. INTRODUCTION 

 

     The theory of Diophantine equations offers a rich variety of fascinating problems [1-4].  Particularly, in [5-7], sextic 

equations with three unknowns are studied for their integral solutions.  [8-14] analyze sextic equations with four 

unknowns for their non-zero integer solutions [15-17] analyze sextic equations with five unknowns for their non-zero 

solutions.  This communication concerns with yet another interesting a non-homogeneous sextic equation with six 

unknowns given by x6 − y6 − 2z3 =  k2 + s2 2nT4(w2 − p2).  Infinitely many non-zero integer tuple (x,y,z) 

satisfying the above equation are obtained.  Various interesting properties among the values of x,y,z are presented 

 

II .NOTATIONS 

 

           KYn   : Polygonal number of rank n with size m 

          𝑃𝑟𝑛     : Pyramidal number of rank n with size m 

           nj     : Jacobsthal lucas number of rank n 

           nJ     : Jacobsthal number of rank n 

 

III.   METHOD OF ANALYSIS 

 

The equation under consideration is 𝑥6 − 𝑦6 − 2𝑧3 =  𝑘2 + 𝑠2 2𝑛𝑇4 𝑤2 − 𝑝2           (1) 

Where  k and s are given non-zero integers.  Different patterns of solutions to (1) are illustrated below: 

A. Pattern:1 

Introduction of the transformations 

𝑥 = 𝑢 + 𝑣, 𝑦 = 𝑢 − 𝑣, 𝑧 = 2𝑢𝑣,   𝑤 = 𝑢𝑣 + 3,   𝑝 = 𝑢𝑣 − 3                                         (2) 

in (1) leads to                 𝑢2 + 𝑣2 = (𝑘2 + 𝑠2)𝑛𝑇2 ∗ 1                                                       (3) 

Let                                    𝑇 =  𝑎2 + 𝑏2                                                                             (4) 

write (1) as                                      1 =
[(1+𝑖)(1−𝑖)]2𝑛

2𝑛
                                                         (5) 

Substituting (4) and (5) in (3) and employing the method of factorization, define  

                                𝑢 + 𝑖𝑣 =  𝑘 + 𝑖𝑠 𝑛(𝑎 + 𝑖𝑏)2 (1+𝑖)2𝑛

2𝑛                                                  (6) 

Since the complex number raised to any positive integer power is also a complex number, we write 
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                                                       (𝑘 + 𝑖𝑠)𝑛 = 𝛼 + 𝑖𝛽                                                   (7) 

where 𝛼 =
1

2
[ 𝑘 + 𝑖𝑠 𝑛 + (𝑘 − 𝑖𝑠)𝑛] 

           𝛽 =
1

2
[ 𝑘 + 𝑖𝑠 𝑛 − (𝑘 − 𝑖𝑠)𝑛 ] 

Using (7) in (6) and equating real and imaginary parts, we have 

 
𝑢 = 𝑐𝑜𝑠𝑛

𝜋

2
 𝛼 𝑎2 − 𝑏2 − 2𝛽𝑎𝑏 − 𝑠𝑖𝑛𝑛

𝜋

2
[𝛼 2𝑎𝑏 + 𝛽(𝑎2 − 𝑏2)]

𝑣 = 𝑠𝑖𝑛
𝜋

2
 𝛼 𝑎2 − 𝑏2 − 2𝛽𝑎𝑏 − 𝑐𝑜𝑠𝑛

𝜋

2
[𝛼 2𝑎𝑏 + 𝛽(𝑎2 − 𝑏2)]

                          (8) 

Using (8) in (2) we get 

 

x a, b =  α a2 − b2 − 2βab  cos
nπ

2
+ sin

nπ

2
 +  α 2ab + β a2 − b2   cos

nπ

2
− sinn

nπ

2
 

y a, b =  α a2 − b2 − 2βab  cos
nπ

2
− sin

nπ

2
 −  α 2ab + β a2 − b2   sin

nπ

2
+ cos

nπ

2
 

z a, b = 2[cos
nπ

2
 α a2 − b2 − 2βab − sin

nπ

2
 α 2ab + β a2 − b2  sin

nπ

2
 α a2 − b2 − 2βab +

cosn
nπ

2
(α 2ab + β(a2 − b2))]

w a, b =  cos
nπ

2
 α a2 − b2 − 2βab − sin

nπ

2
 α 2ab + β a2 − b2   

 sin
nπ

2
 α a2 − b2 − 2βab + cos

nπ

2
 α 2ab + β a2 − b2   + 3

p a, b =  cos
nπ

2
 α a2 − b2 − 2βab − sin

nπ

2
 α 2ab + β a2 − b2   

 sin
nπ

2
 α a2 − b2 − 2βab + cos

nπ

2
 α 2ab + β a2 − b2   − 3  

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 

                                                                                                                            -------------------(9) 

Thus (4) and (9) represent the non-zero integer solutions to (1) 

For illustration and clear understanding, substituting n=1, in (9), the corresponding non-zero distinct integral solutions 

to (1) are given by  

x a, b = α a2 − b2 + 2ab + β(a2 − b2 − 2ab)  

y a, b = α a2 − b2 − 2ab − β(a2 − b2 + 2ab)  

w a, b =  α a2 − b2 − 2βab  α 2ab + β a2 − b2  + 3 

p a, b =  α a2 − b2 − 2βab  α 2ab + β a2 − b2  − 3 

T a, b = a2 + b2 

B. Properties 

(i) 𝑥 𝑠, 𝑠 + 1 + 𝑦 𝑠, 𝑠 + 1 = 2𝛼 𝑡3,𝑠 − 2𝑡4,𝑠 + 1 − 4𝛽𝑃𝑟𝑠 

 𝑖𝑖 𝑥 2𝑠 , 1 =  𝛼 + 𝛽  3𝐽2𝑠 + 2 𝛼 − 𝛽 (𝑗𝑠 − (−1)𝑠) 

(iii) 𝑦 2𝑠 , 1 = 𝛼 3𝐽2𝑠 − 𝑗𝑠+1 +  −1 𝑠+1 − 𝛽(𝐾𝑌𝑠) 

Note:  

Suppose, we choose k and s such that  𝑘2 + 𝑠2 = 𝜎2.  Then (3) becomes                  

                             𝑢2 + 𝑣2 = (𝜎𝑛𝑇)2                                                                 (10) 

which is in the form of the Pythagorean equation.  For this choice, the sextuple (x,y,z,w,p,T) satisfying (1) is given by 

x = σ2n[p2 − q2 + 2pq] 
y = σ2n[−p2 + q2 + 2pq] 
z = 4σ4n[p2 − q2]pq 

w = 2pq[p2 − q2] + 3 

p = 2pq p2 − q2 − 3 

𝑇 = 𝜎𝑛(𝑝2 + 𝑞2) 
It is observed that the above values are different from (4) and (9) 

C. Pattern.2 

Note that (10) is written in the form of ratio as 

                            
𝜎𝑛𝑇+𝑣

𝑢
 =

𝑢

𝜎𝑛𝑇−𝑣
 =  

𝐴

𝐵
,   𝐵 ≠ 0                                                   (11) 

which is equivalent to the system of equation  

                                          
 𝜎𝑛𝐵 𝑇 + 𝐵𝑣 − 𝐴𝑢 = 0
 𝜎𝑛𝐴 𝑇 − 𝐴𝑣 − 𝐵𝑢 = 0

                                              (12) 
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Applying the method of cross multiplication to the above system, we obtain 

                                          
𝑢 = −2𝜎𝑛𝐴𝐵

𝑣 = 𝜎𝑛 𝐵2 − 𝐴2 
                                                           (13) 

                                           𝑇 = − 𝐴2 + 𝐵2                                                            (14) 

Thus from (13) and (2), we get 

 

𝑥 = 𝜎𝑛 𝐵2 − 𝐴2 − 2𝐴𝐵 

𝑦 = 𝜎𝑛 𝐵2 − 𝐴2 + 2𝐴𝐵 

𝑧 = −4𝜎2𝑛 𝐵2 − 𝐴2 𝐴𝐵

𝑤 = −2𝜎2𝑛𝐴𝐵 𝐵2 − 𝐴2 + 3

𝑝 = −2𝜎𝑛𝐴𝐵 𝐵2 − 𝐴2 − 3  
 
 

 
 

                                                                             (15) 

Hence, (15) and (14) represent the integral solutions of (1) 

D. Properties: 

(i) 𝑤3 + 𝑝3 + 3𝑧𝑝𝑤 = 𝑧3 

(ii) 𝑥2 − 𝑦2 = 2(𝑤 + 𝑝) 

(iii) 𝑥2 − 𝑦2 − 4𝑝 ≡ 0 (𝑚𝑜𝑑12) 

(iv) (𝑥2 − 𝑦2)2 = 𝑧2(𝑤 − 𝑝 − 2) 

(v) 𝑧2 − 4𝑤2 + 24𝑤 ≡ 0 (𝑚𝑜𝑑 9) 

 

IV.   REMARKABLE OBSERVATIONS 

 

(i) The triple (x,y,z) satisfies the hyperbolic paraboloid 𝑥2 − 𝑦2 = 2𝑧 

(ii) If 𝛼 > 𝛽 and 𝑎2 − 𝑏2 > 2𝑎𝑏, then 𝑢 > 𝑣.  Let  𝛼, 𝛽, 𝛾  be the Pythagorean triangle with u, v as generators. Set 

𝛼 = 2𝑢𝑣, 𝛽 = 𝑢2 − 𝑣2 , 𝛾 = 𝑢2 + 𝑣2 and A,P represent its area and perimeter respectively.  Note that 

                                                         𝑖  𝑥𝑦𝑧 = 2𝐴 

                                                          ii 
4A

P
=  x − y y 

 

   V. CONCLUSION 

 

     It is worth to mention here that, the values of w and p in (2) may be considered as  (i) w= 3uv+1,   p=3u-v and (ii)  

w=3uv+1,   p=3uv-1.   Further, in addition to (5), one may also write 1 as  

1 =  
(𝑝2−𝑞2+2𝑖𝑝𝑞 )(𝑝2−𝑞2−2𝑖𝑝𝑞 )

(𝑝2+𝑞2)2   Following the analysis presented above, one may obtain other patterns of non-zero 

integer solutions to (1) 

      To conclude, one may search for other choice of transformations to analyze (1) for its non-zero distinct  integral 

solutions    
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